Three- and 4-Dimensional Ultrasound in Obstetric Practice
Does It Help?

Luís F. Gonçalves, MD, Wesley Lee, MD, Jimmy Espinoza, MD, Roberto Romero, MD

Objective. The purpose of this article was to review the published literature on 3-dimensional ultrasound (3DUS) and 4-dimensional ultrasound (4DUS) in obstetrics and determine whether 3DUS adds diagnostic information to what is currently provided by 2-dimensional ultrasound (2DUS) and, if so, in what areas.

Methods. A PubMed search was conducted for articles reporting on the use of 3DUS or 4DUS in obstetrics. Seven-hundred six articles were identified, and among those, 525 were actually related to the subject of this review. Articles describing technical developments, clinical studies, reviews, editorials, and studies on fetal behavior or maternal-fetal bonding were reviewed.

Results. Three-dimensional ultrasound provides additional diagnostic information for the diagnosis of facial anomalies, especially facial clefts. There is also evidence that 3DUS provides additional diagnostic information in neural tube defects and skeletal malformations. Large studies comparing 2DUS and 3DUS for the diagnosis of congenital anomalies have not provided conclusive results. Preliminary evidence suggests that sonographic tomography may decrease the examination time of the obstetric ultrasound examination, with minimal impact on the visualization rates of anatomic structures.

Conclusions. Three-dimensional ultrasound provides additional diagnostic information for the diagnosis of facial anomalies, evaluation of neural tube defects, and skeletal malformations. Additional research is needed to determine the clinical role of 3DUS and 4DUS for the diagnosis of congenital heart disease and central nervous system anomalies. Future studies should determine whether the information contained in the volume data set, by itself, is sufficient to evaluate fetal biometric measurements and diagnose congenital anomalies. Key words: 4-dimensional ultrasound; pregnancy; 3-dimensional ultrasound; ultrasound.

Abbreviations
CI, confidence interval; CT, computed tomography; 4D, 4-dimensional; 4DUS, 4-dimensional ultrasound; GPV, geometric pyramidal volume; MRI, magnetic resonance imaging; NTT, nuchal translucency thickness; STIC, spatiotemporal image correlation; 3D, 3-dimensional; 3DUS, 3-dimensional ultrasound; 2D, 2-dimensional; 2DUS, 2-dimensional ultrasound; VOCAL, Virtual Organ Computer-Aided Analysis.

Received September 21, 2005, from the Perinatology Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland USA (L.F.G., J.E., R.R.); Department of Obstetrics and Gynecology, Wayne State University/Hutzel Hospital, Detroit, Michigan USA (L.F.G., J.E.); and Division of Fetal Imaging, William Beaumont Hospital, Royal Oak, Michigan USA (W.L.). Manuscript accepted for publication September 22, 2005.

This research was supported by the Intramural Research Program of the National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services.

Address correspondence to Roberto Romero, MD, Perinatology Research Branch, National Institute of Child Health and Human Development, Wayne State University/Hutzel Women’s Hospital, 3990 John R, Box 4, Detroit MI 48201 USA.
E-mail: warfiela@mail.nih.gov

Supplemental data online at www.jultrasoundmed.org.

Sonologists have used 3-dimensional ultrasound (3DUS) reconstruction since the early days of diagnostic sonography. Although images have been traditionally acquired with 2-dimensional (2D) devices, the interpretation of anatomic relationships has always been a 3-dimensional (3D) process, involving image reconstruction in the brain. The mental process of converting 2D into 3D images is not an easy one, and is dependent on individual skills and training. Therefore, it is not surprising that the skills involved in interpreting...
ultrasound images are not uniform and vary between practitioners. This issue has profound clinical implications and can be illustrated by the wide disparity in diagnostic accuracy of ultrasound to detect congenital anomalies.3–6

The idea of performing 3DUS in obstetrics was born out of the desire to move from 3D mental reconstruction to actual 3D visualization of anatomic structures. Tanaka et al,7 for example, reported in the early 1980s on the development of a computerized ultrasound system to reconstruct and display sagittal and coronal planes from images acquired in the transverse plane. The system allowed the investigators to confirm the location and expansion of the placenta and visualize the fetus more clearly than was possible using the original plane of acquisition alone. In 1989, Baba et al8 reported on the examination of a fetus with an experimental 3DUS system that was built with linear and convex array probes mounted on the position-sensing arm of a manual compound scanner.

Since then, several methods for 3DUS have been developed, and 4 have actually been used more extensively for the acquisition of 3D volume data sets: (1) freehand acquisition using a conventional 2-dimensional ultrasound (2DUS) transducer without position sensing; (2) freehand acquisition using a conventional 2DUS transducer with position sensing; (3) automated acquisition using dedicated mechanical volume probes; and (4) real-time 3D imaging using 2D array transducers.9,10 A detailed description of acquisition methods for 3DUS is beyond the scope of this article, and the issue has been reviewed in depth by Nelson et al.11 Regardless of the method used for volume acquisition, images are displayed using 3 simultaneous orthogonal planes and/or rendered images (Figure 1).12–16 Other methods and algorithms have recently become commercially available to automatically slice 3D volume data sets and display a series of 9 or more parallel tomographic images on the screen, similarly to the display methods traditionally used in computed tomography (CT) and magnetic resonance imaging (MRI) (Multislice View [Accuvix; Medison, Seoul, Korea] and Tomographic Ultrasound Imaging [Voluson 730, GE Healthcare, Kretztechnik, Zipf, Austria] (Figure 2). This new display modality has been described for prenatal visualization of anatomic fetal structures and diagnosis of congenital anomalies.17

Several potential benefits of 3DUS in obstetrics have been described or proposed before, including: (1) the ability to review volume data interactively after the patient has left the examination room;6,18 (2) the possibility of using different planes of section for the evaluation of anatomic structures other than the original acquisition plane;15,16,18,19 (3) the possibility of rotating the volume data set so that anatomic structures can be examined from different perspectives; (4) the availability of a variety of rendering methods that allow examiners to visualize different characteristics of the same structure (eg, the same volume data set of the fetal back can reveal the external aspect of a meningomyelocele when rendered in the surface mode or, alternatively, the underlying bones when the volume data set is rendered in the maximum-intensity mode);21 (5) improved accuracy for volume measurements, including the possibility of measuring the volume of irregular objects;9,22–26 (6) the possibility of standardizing ultrasound examinations;18,27 (7) the ability to transmit data over networks for consultation in tertiary care centers;18,28–30 and (8) the potential to use offline software programs as an interactive educational tool.16,31

The incorporation of 3DUS into clinical practice, however, will require more than visually appealing images or praise regarding the diagnostic possibilities of this technology. Wide acceptance will come if: (1) there is scientific evidence that 3DUS adds information to what is currently provided by 2DUS;18 (2) the new method proves to be easy to use and less operator-dependent than conventional 2DUS; and (3) the amount of time required to perform a 3DUS examination is faster than that of conventional ultrasound, reducing examination time and increasing patient throughput, an important issue in busy diagnostic units.27

In this article, we will review the published literature on 3DUS in obstetrics in an attempt to determine whether 3DUS adds diagnostic information to what is currently provided by 2DUS and, if so, in what areas.

Methods

conducted for articles reporting on 3DUS or 4-dimensional ultrasound (4DUS) in obstetrics, using the following key words: 3D or 4D or three-dimensional or four-dimensional and ultrasound or ultrasonography and obstetrics or fetus or fetal or prenatal. Seven-hundred six articles were identified, and the titles and abstracts were reviewed to filter out those that did not report on the use of 3DUS or 4DUS in obstetrics. The final number of articles was reduced to 525, and the articles were categorized as follows: (1) technical developments (n = 78), (2) clinical studies (n = 131), (3) case reports and case series (n = 161), (4) biometric and volumetric studies (n = 72), (5) reviews (n = 59), (6) editorials, opinions, and letters to the editor (n = 15), (7) studies on fetal behavior (n = 5), and studies on maternal-fetal bonding (n = 4).

Articles describing technical developments, clinical studies, reviews, editorials, studies on fetal behavior, or maternal-fetal bonding were retrieved for further review. Although we recognize the importance of case reports in providing the first line of evidence for unusual diagnoses or uncommon manifestations of disease, these will not be systematically reviewed in this article. A complete database of the publications retrieved for this review is available online (Supplemental File 1).

The Fetal Face

Examination of the fetal face by 3DUS has received a great amount of attention from the medical community, patients, and the media. This is not surprising since this technology allowed, for the first time, the opportunity to obtain noninvasive realistic “photography-like” images of the fetus, particularly of the fetal face (Figure 3). Technical developments, such as the electronic fetal scalpel, which allows the removal of unwanted information from the volume data set, have been reported to improve the image quality for visualization of the fetal face in approximately 70% of the cases. More recently, with the introduction of 4DUS into clinical practice, facial expressions such as mouth opening, tongue protrusion, yawning, smiling, scowling, and eye opening and blinking can now be studied in great detail.
Examination of the fetal face by 3DUS is performed using both multiplanar and rendered displays. The multiplanar display allows the examiner to “navigate” through the volume data set simultaneously in the 3 orthogonal planes and determine the precise location of an anatomic structure or abnormality of interest (eg, facial clefts). In the example shown in Figure 4, the reference dot, which marks the intersection of the 3 orthogonal planes, is positioned on the left side of the alveolar ridge, identifying the precise location of a cleft palate in the transverse (A), sagittal (B), and coronal (C) planes. The rendered image in Figure 4D shows the external aspect of the cleft lip. Novel display modalities, such as Multislice View (Accuvix; Medison) and Tomographic Ultrasound Imaging (Voluson 730; GE Healthcare, Kretztechnik), as well as innovative approaches to render volume data, such as 3D reverse face, have been recently proposed to improve the visualization of facial clefts.

The possibility of examining the fetal face using multiplanar display or 3D rendering techniques has led several investigators to hypothesize that the adjunctive use of 3DUS would improve the diagnostic accuracy of 2DUS for the detection of facial clefts and other facial dysmorphisms (eg, hypertelorism, hypotelorism, frontal bossing, micrognathia, and absent or hypoplastic nasal bones). Results of studies comparing 2DUS with 3DUS for the diagnosis of facial anomalies are summarized in Table 1. Among the 11 studies described in this table, 7 concluded that 3DUS provided additional diagnostic information compared to what was provided by 2DUS only, and 4 concluded that the diagnostic information provided by 3DUS was similar to that obtained by 2DUS. The benefits of 3DUS were mainly due to an improvement in the diagnostic accuracy to detect clefts of the palate and the decrease in the number of false-positive diagnoses.

To conclude this section, we will comment on particular insights provided by 2 studies. The first is a study by Rotten and Levaillant, which did not compare but, rather, examined the value of combined 2DUS and 3DUS for the diagnosis of facial clefts. Facial clefts (n = 96) were classified into 6 categories according to the location and extent of the cleft. The results of combined 2DUS and 3DUS were compared with neonatal outcome. Strict concordance between prenatal and postnatal diagnoses was observed in 87.5% (84/96) of the cases, whereas the combined use of 2DUS and 3DUS underestimated the severity of the clefts in 8.3% (8/96) of the cases and overestimated in 4.1% (4/96). The second is a study by Johnson et al, which has been already summarized in Table 1, but also reported in detail the results of the ultrasound examinations and neonatal outcomes for each of the 31 fetuses enrolled in the study. Perfect agreement between
Table 1. Summary of Studies Comparing 2DUS Versus 3DUS for the Examination of the Fetal Face

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>n</th>
<th>Population</th>
<th>Outcomes</th>
<th>2D n</th>
<th>2D %</th>
<th>3D n</th>
<th>3D %</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretorius et al*</td>
<td>1995</td>
<td>71</td>
<td>61 low-risk pregnancies and 10 pregnancies at risk for cleft lip and/or palate</td>
<td>Normal lips</td>
<td>62</td>
<td>86.2</td>
<td>58</td>
<td>82.1</td>
<td>3DUS confirmed the presence of normal lips more frequently than 2DUS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abnormal lips</td>
<td>5</td>
<td>71.4</td>
<td>5</td>
<td>100.0</td>
<td>Both 2DUS and 3DUS accurately detected all cases of cleft lip and/or palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lips not visualized</td>
<td>3</td>
<td>42.9</td>
<td>3</td>
<td>100.0</td>
<td>3DUS revealed an additional anomaly not perceived by 2DUS in 20% of the cases</td>
</tr>
<tr>
<td>Mueller et al*</td>
<td>1996</td>
<td>13</td>
<td>13 fetuses at risk for or suspected to have cleft lip and/or palate by 2DUS</td>
<td>Normal lips and palate</td>
<td>5</td>
<td>100.0</td>
<td>5</td>
<td>100.0</td>
<td>3DUS showed normal lips more frequently than 2DUS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cleft lip and/or palate</td>
<td>8</td>
<td>88.9</td>
<td>8</td>
<td>100.0</td>
<td>3DUS showed normal lips more frequently than 2DUS</td>
</tr>
<tr>
<td>Merz et al*</td>
<td>1997</td>
<td>618</td>
<td>618 high-risk pregnancies</td>
<td>Facial anomaly</td>
<td>25</td>
<td>80.0</td>
<td>25</td>
<td>100.0</td>
<td>3DUS revealed an additional anomaly not perceived by 2DUS in 20% of the cases</td>
</tr>
<tr>
<td>Hata et al*</td>
<td>1998</td>
<td>94</td>
<td>94 healthy pregnancies</td>
<td>Normal lips</td>
<td>94</td>
<td>100.0</td>
<td>94</td>
<td>100.0</td>
<td>Both 2DUS and 3DUS accurately showed normal lips</td>
</tr>
<tr>
<td>Ulm et al*</td>
<td>1999</td>
<td>45</td>
<td>Singleton pregnancies</td>
<td>Visualization of tooth buds on both mandible and maxilla</td>
<td>45</td>
<td>25</td>
<td>56</td>
<td>39</td>
<td>3DUS showed tooth buds in a higher proportion of cases than 2DUS</td>
</tr>
<tr>
<td>Johnson et al*</td>
<td>2000</td>
<td>31</td>
<td>Consecutive fetuses suspected to have a facial cleft*</td>
<td>Normal lips</td>
<td>3</td>
<td>33.3</td>
<td>3</td>
<td>100</td>
<td>3DUS performed better than 2DUS in identifying defects of the palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unilateral cleft lip</td>
<td>5</td>
<td>100.0</td>
<td>5</td>
<td>100.0</td>
<td>3DUS performed better than 2DUS in identifying defects of the palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unilateral cleft lip and palate</td>
<td>15</td>
<td>46.7</td>
<td>13</td>
<td>87</td>
<td>3DUS performed better than 2DUS in identifying defects of the palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bilateral cleft lip and palate</td>
<td>5</td>
<td>20.0</td>
<td>4</td>
<td>80</td>
<td>3DUS performed better than 2DUS in identifying defects of the palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median cleft lip</td>
<td>3</td>
<td>66.7</td>
<td>3</td>
<td>100</td>
<td>3DUS performed better than 2DUS in identifying defects of the palate</td>
</tr>
<tr>
<td>Chen et al*</td>
<td>2001</td>
<td>21</td>
<td>21 fetuses with facial clefts</td>
<td>Unilateral cleft lip and palate</td>
<td>9</td>
<td>33.3</td>
<td>9</td>
<td>100</td>
<td>3DUS performed better than 2DUS in identifying defects of the palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unilateral cleft lip</td>
<td>7</td>
<td>29</td>
<td>7</td>
<td>100</td>
<td>3DUS performed better than 2DUS in identifying defects of the palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bilateral cleft lip and palate</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>100</td>
<td>3DUS performed better than 2DUS in identifying defects of the palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bilateral cleft lip</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>100</td>
<td>3DUS performed better than 2DUS in identifying defects of the palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unilateral cleft lip and palate</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>Both 2DUS and 3DUS detected craniofacial anomalies; in 1 case, 3DUS images were considered nondiagnostic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bilateral cleft lip</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>3DUS performed better than 2DUS in identifying defects of the palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bilateral cleft lip and palate</td>
<td>3</td>
<td>100</td>
<td>3</td>
<td>100</td>
<td>3DUS performed better than 2DUS in identifying defects of the palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bilateral cleft lip</td>
<td>2</td>
<td>100</td>
<td>2</td>
<td>100</td>
<td>3DUS performed better than 2DUS in identifying defects of the palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Saddle nose and frontal bossing</td>
<td>3</td>
<td>100</td>
<td>3</td>
<td>100</td>
<td>3DUS performed better than 2DUS in identifying defects of the palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crouzon syndrome</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>3DUS performed better than 2DUS, especially for the detection of cleft palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pfeiffer syndrome</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>3DUS performed better than 2DUS, especially for the detection of cleft palate</td>
</tr>
<tr>
<td>Ghi et al*</td>
<td>2002</td>
<td>12</td>
<td>Craniofacial malformations examined by 2DUS and 3DUS</td>
<td>Cranial dysmorphosis absent</td>
<td>11</td>
<td>100</td>
<td>11</td>
<td>100</td>
<td>No difference between 2DUS and 3DUS for the diagnosis of facial dysmorphisms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cranial dysmorphosis present</td>
<td>23</td>
<td>74</td>
<td>18</td>
<td>78</td>
<td>3DUS performed better than 2DUS, especially for the detection of cleft palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>False-positive diagnoses</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>3DUS performed better than 2DUS, especially for the detection of cleft palate</td>
</tr>
<tr>
<td>Chmait et al*</td>
<td>2002</td>
<td>53</td>
<td>Fetuses referred for suspected facial cleft</td>
<td>Cleft lip</td>
<td>45</td>
<td>91</td>
<td>45</td>
<td>100</td>
<td>3DUS performed better than 2DUS, especially for the detection of cleft palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cleft palate</td>
<td>41</td>
<td>46</td>
<td>37</td>
<td>90</td>
<td>3DUS performed better than 2DUS, especially for the detection of cleft palate</td>
</tr>
<tr>
<td>Mangione et al*</td>
<td>2003</td>
<td>34</td>
<td>Fetuses with genetic or nongenetic disorders associated with cranial dysmorphism</td>
<td>Cranial dysmorphosis absent</td>
<td>11</td>
<td>100</td>
<td>11</td>
<td>100</td>
<td>3DUS performed better than 2DUS, especially for the detection of cleft palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cranial dysmorphosis present</td>
<td>23</td>
<td>74</td>
<td>18</td>
<td>78</td>
<td>3DUS performed better than 2DUS, especially for the detection of cleft palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>False-positive diagnoses</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>3DUS performed better than 2DUS, especially for the detection of cleft palate</td>
</tr>
<tr>
<td>Mittermayer et al*</td>
<td>2004</td>
<td>18</td>
<td>Fetuses suspected to have a facial cleft by 2DUS examination</td>
<td>Normal lips</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>100</td>
<td>3DUS performed better than 2DUS, especially for the detection of cleft palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cleft lip</td>
<td>15</td>
<td>87</td>
<td>15</td>
<td>100</td>
<td>3DUS performed better than 2DUS, especially for the detection of cleft palate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cleft primary palate</td>
<td>12</td>
<td>58</td>
<td>12</td>
<td>100</td>
<td>3DUS performed better than 2DUS, especially for the detection of cleft palate</td>
</tr>
</tbody>
</table>

*Probable and equivocal clefts by ultrasonography were classified as normal for the purposes of this review; 1 patient with unknown palate status in a case of median cleft lip was considered to have positive findings for cleft palate because that is the typical appearance for this condition.
ultrasonographic diagnosis and neonatal outcomes was observed in 87.1% (27/31) of the 3DUS examinations, but in only 45.2% (14/31) of the examinations performed by 2DUS. Two-dimensional ultrasound underestimated the severity of the defect in 12.9% (4/31) of the cases compared to 3.2% (1/31) by 3DUS. Most importantly, 2DUS overestimated the severity of the defects in 41.9% (13/31) of the cases, whereas 3DUS did so in only 9.7% (2/31) of the cases.

Examination of the Fetal Brain by 3D Ultrasound

Three-dimensional ultrasound has been proposed as a potentially valuable tool for the examination of the fetal brain and for the prenatal diagnosis of intracranial anomalies. Benefits would include: (1) the ability to define the severity, location, and extent of central nervous system anomalies; (2) the possibility of reconstructing and visualizing the corpus callosum in the sagittal plane from volume data sets acquired with transverse sweeps through the fetal head; (3) the use of rendering and rotation techniques in volume data sets acquired with color or power Doppler imaging to improve visualization of cerebral blood flow; (4) the possibility of increasing the speed of fetal neurosonography performed by 2D transvaginal ultrasonography and, at the same time, obtaining tomographic planes of section comparable with those that can be obtained by CT or MRI; and (5) the possibility of visualizing the 3 horns of the ventricular system in a single plane (3-horn view).

Despite these potential benefits, only 2 studies have focused on comparing 2DUS and 3DUS for the examination of brain structures or for the diagnosis of congenital brain anomalies, both with a limited number of subjects. In 1996, Mueller et al compared 2DUS and 3DUS for diagnosis of central nervous system anomalies in 11 fetuses with ventriculomegaly (n = 4), anencephaly (n = 1), spina bifida (n = 5), and encephalocele (n = 1). One case of spina bifida was missed by 2DUS but was correctly diagnosed with 3DUS. In addition, an erroneous diagnosis of encephalocele by 2DUS was corrected as a cervical meningomyelocele when the examination was performed by 3DUS. Wang et al reported on the improved ability of 3DUS to visualize the intracranial midline and corpus callosum when compared with 2DUS. Among 32 fetuses examined by transabdominal 2DUS and 3DUS, the intracranial midline and corpus callosum were visualized in 78.1% (25/32) of the examinations performed by 3DUS but in only 3.1% (2/32) of those performed by 2DUS (McNemar test, P < .05).

Evaluation of the Fetal Spine

The fetal spine can be examined by 3DUS using multiplanar display, volume rendering with the maximum-intensity projection mode (also known as skeletal mode), or a combination of both methods. Volume rendering with maximum-intensity projection allows clear depiction of bony structures and, depending on the gestational age of the fetus, visualization of the entire spine in a single image. Additional features that improve the characterization of spinal anomalies include the possibility of rotating the volume data set and visualizing the spine from multiple perspectives. Several investigators have reported on the prenatal diagnosis of anomalies affecting the fetal spine by 3DUS, including scoliosis, hemivertebrae, and neural tube defects. Other applications have included the measurement of the size and volume of the vertebral bodies, spinal canal, and spinal length.

Three-dimensional ultrasound has also been shown to be useful as an adjunctive modality to determine the level of the defect in cases of spina bifida. Johnson et al, for example, showed perfect agreement between the defect level determined by 3DUS and postnatal diagnosis in 3 of 5 cases of spina bifida. In a subsequent publication, Lee et al described a standardized approach for the examination of the fetal spine by 3DUS and compared the ability of 2DUS versus 3DUS to determine the highest level of the defect among 9 fetuses with a confirmed diagnosis of spina bifida. Spinal levels were independently counted from the most caudal thoracic vertebra with a rib (eg, 12th thoracic rib), and a virtual cutting plane was manipulated through a volume-rendered spine to generate optimal multiplanar views to determine the defect level. The spinal level agreed to within 1 vertebral segment in 8 of 9 fetuses examined by 3DUS versus 6 of 9 fetuses when the examination was performed by 2DUS. In addition, an intact meningeal sac was visualized with the use of surface-rendering algorithms in 5 of the 9 subjects.
Examination of the Fetal Skeleton and Diagnosis of Skeletal Dysplasias

In 1995, Nelson and Pretorius83 reported that the vertebral bodies and the structural continuity of the spine and ribs could be visualized in rendered 3DUS images and, furthermore, that rotation of volume data sets could be used to demonstrate the spatial relationships between the spine and rib cage. Similarly to the approach described above for the examination of the fetal spine, maximum-intensity projection algorithms are generally used to image the fetal skeleton by 3DUS.84,85

The ability to directly image the cranial bones, sutures, and fontanelles has been reported since the early days of 3DUS.69,86 Contrary to 2DUS, which is capable of displaying only a partial cross-sectional slice of a fetal suture, volume-rendered images show the cranial bones in their entirety, facilitating visualization of sutures and fontanelles and offering the potential to identify cranial lesions difficult to detect by 2DUS.86 Most sutures and fontanelles can be visualized by 3DUS throughout gestation; however, visualization rates are higher during the second trimester of pregnancy.87 Ginath et al88 specifically compared visualization rates of fetal cranial sutures and fontanelles by transvaginal 2DUS and 3DUS in 50 fetuses examined between 15 and 16 weeks of gestation and concluded that, although both modalities identified all sutures in a similar proportion of cases, 3DUS facilitated the visualization of the sagittal suture.

The potential role of 3DUS for the prenatal diagnosis of skeletal anomalies has been explored in several case reports and small case series (Table 2).89–99 These studies highlight specific features of 3DUS in providing additional diagnostic information for the evaluation of skeletal anomalies when compared with 2DUS. For example, Garjian et al90 and Krakow et al96 reported the diagnosis of additional facial90,96 and scapular90 anomalies, as well as abnormal calcification patterns96 in fetuses with skeletal dysplasias, whereas Moeglin and Benoit83 used multiplanar visualization methods to show a “pointed appearance” of the upper femoral diaphysis in a case of achondroplasia. A study by Ruano et al97 is noteworthy because it compared visualization rates of skeletal findings between 2DUS and 3DUS, as well as between these two modalities and 3D helical CT. Both 3DUS and 3D helical CT correctly identified the 6 cases of skeletal dysplasias prenatally. However, the visualization rates for skeletal structures were highest for 3D helical CT (94.1%), followed by 3DUS (77.1%) and 2DUS (51.4%), respectively.

Comparisons Between 2DUS and 3DUS for the Diagnosis of Congenital Anomalies

Some investigators have attempted to assess the role of 3DUS for the diagnosis of congenital anomalies (Table 3).16,100–106 Some of the studies found that 3DUS was advantageous for visual-

Table 2. Additional Phenotypic Findings and Improved Visualization of Skeletal Dysplasias by 3DUS in Published Reports

<table>
<thead>
<tr>
<th>Skeletal Dysplasia</th>
<th>Improved Visualization of the Fetal Phenotype by 3DUS When Compared to 2DUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platylspondylic lethal chondrodysplasia99</td>
<td>Enhanced visualization of femoral and tibial bowing; better characterization of the facial soft tissues with surface rendering</td>
</tr>
<tr>
<td>Camptomelic dysplasia90,98</td>
<td>Micrognathia; flat face; hypoplastic scapulae; bifid foot</td>
</tr>
<tr>
<td>Thanatophoric dysplasia90,92,96</td>
<td>Improved characterization of frontal bossing and depressed nasal bridge; demonstration of redundant skin folds; low-set dysmorphic ears</td>
</tr>
<tr>
<td>Achondroplasia93,96,97</td>
<td>Improved characterization of frontal bossing and depressed nasal bridge; superior evaluation of the epiphyses and metaphyses of the long bones, with demonstration of a vertical metaphyseal slope; caudal narrowing of the interpedicular distance; clear visualization of trident hand; better visualization of disproportion between limb segments</td>
</tr>
<tr>
<td>Chondrodysplasia punctata, rhizomelic form96,97</td>
<td>Improved characterization of the Binder facies (depressed nasal bridge, midface hypoplasia, small nose with upturned alae); identification of laryngeal stippling; visualization of large metaphyses with stippling</td>
</tr>
<tr>
<td>Achondrogenesis96</td>
<td>Panoramic demonstration of short neck and severe shortening of all segments of the limbs</td>
</tr>
<tr>
<td>Jarcho-Levin syndrome95</td>
<td>Vertebral defects with absence of ribs and transverse process</td>
</tr>
<tr>
<td>Larsen syndrome99</td>
<td>Genu recurvatum, midface hypoplasia, low-set ears</td>
</tr>
</tbody>
</table>

Phenotypic characteristics of osteogenesis imperfecta,90 short-rib polydactyly syndrome,94 and Apert syndrome96 have also been described on 3DUS, although no additional findings to those of 2DUS were observed.
visualization of congenital anomalies, whereas others found that 3DUS did not provide significant additional information over what was provided by 2DUS. Scharf et al104 and Xu et al105 compared visualization rates for congenital anomalies or the capability of reaching a specific diagnosis between 3DUS and 2DUS. These studies again reported conflicting results. Although Xu et al105 reported higher visualization rates for congenital anomalies by 3DUS (78.0% [32/40] versus 92.7% [38/41]; McNemar test, \(P < .05 \)), Scharf et al104 found that 3DUS did not provide significant additional information over what was provided by 2DUS (68.3% [28/41] versus 97.5% [39/41]; McNemar test, \(P < .05 \)).

Table 3. Prenatal Diagnosis of Congenital Anomalies With 3DUS and 2DUS

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>GA, wk</th>
<th>n</th>
<th>Population</th>
<th>Outcome Measures</th>
<th>3DUS</th>
<th>2DUS</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merz et al16</td>
<td>1995</td>
<td>16–38</td>
<td>204</td>
<td>Patients with a fetal malformation detected by conventional 2DUS</td>
<td>3DUS advantageous to show fetal structures</td>
<td>127</td>
<td>62.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3DUS provided similar information</td>
<td>73</td>
<td>35.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3DUS provided less information*</td>
<td>4</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Merz et al100</td>
<td>1995</td>
<td>16–38</td>
<td>458</td>
<td>242 healthy fetuses and 216 with congenital anomalies diagnosed by 2DUS</td>
<td>Diagnostic gain over 2DUS</td>
<td>139</td>
<td>64.2</td>
<td></td>
</tr>
<tr>
<td>Platt et al101</td>
<td>1998</td>
<td>6–35</td>
<td>161</td>
<td>Obstetric and gynecologic patients attending a clinic; clinically suspected</td>
<td>3DUS provided additional information or changed diagnosis</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>anomalies or findings ((n = 32))</td>
<td>3DUS provided similar information</td>
<td>29</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Baba et al102</td>
<td>1999</td>
<td>13–35</td>
<td>19</td>
<td>36 abnormalities detected in 19 pregnancies complicated by congenital</td>
<td>Anomaly visualized by 4DUS only†</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>malformations; all examinations with 4DUS</td>
<td>Anomaly visualized by 2DUS only‡</td>
<td>16</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anomaly visualized by both 2DUS and 4DUS</td>
<td>9</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Dyson et al103</td>
<td>2000</td>
<td>12–38</td>
<td>63</td>
<td>103 anomalies examined by 2DUS and 3DUS; patients selected for the study</td>
<td>3DUS provided additional information</td>
<td>53</td>
<td>51.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>on the basis that 3DUS might provide useful information. Review of</td>
<td>3DUS provided similar information</td>
<td>46</td>
<td>44.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3DUS data done remote from the time of 2DUS examination</td>
<td>3DUS disadvantageous</td>
<td>4</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3DUS provided similar information</td>
<td>355</td>
<td>35.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anomalies detected exclusively by 3DUS</td>
<td>42</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>Scharf et al104</td>
<td>2001</td>
<td>7–41</td>
<td>433</td>
<td>Mixed high- and low-risk population; 40 fetuses with congenital anomalies</td>
<td>Visualization rate of congenital anomalies</td>
<td>28</td>
<td>68.3</td>
<td>39 < .05‡</td>
</tr>
<tr>
<td>Xu et al105</td>
<td>2002</td>
<td>16–42</td>
<td>216</td>
<td>High-risk pregnancies; 41 fetuses with confirmed congenital anomalies</td>
<td>Definitive diagnosis of a congenital anomaly</td>
<td>38</td>
<td>92.7</td>
<td>32 < .05‡</td>
</tr>
<tr>
<td>Merz and Welter106</td>
<td>2005</td>
<td>11–35</td>
<td>3472</td>
<td>Pregnancies at high risk for anomalies; 1012 congenital anomalies detected in 906 pregnancies</td>
<td>3DUS advantageous to show anomalies</td>
<td>615</td>
<td>60.8</td>
<td></td>
</tr>
</tbody>
</table>

GA indicates gestational age.

*Four fetuses with heart defects; lack of information attributed to motion artifacts.
†The 2 anomalies detectable by 4DUS only were facial dysmorphism and clubfoot.
‡Anomalies detectable by 2DUS only in this study represented abnormalities of the internal organs.
Three- and 4-Dimensional Ultrasound for the Examination of the Fetal Heart

Technical Developments That Made 3- and 4-Dimensional Examination of the Fetal Heart Possible

The feasibility of examining the fetal heart by 3DUS and 4DUS was reported by Nelson et al in 1996. At that time, the authors described technical principles that could be used to perform 3D and 4-dimensional (4D) fetal echocardiography, several of which have been incorporated into clinical practice. Using a fast Fourier transform method, similar to what is now clinically available as spatiotemporal image correlation (STIC), the authors were able to gate (synchronize) the spatial and temporal information necessary to display 4D images of the beating fetal heart while also showing, for the first time, the possibility of extracting “blood pools” from the volume data sets by inverting the gray scale (similar to what is now clinically available as “inversion mode”). A similar concept to acquire and display 4D volume data sets of the fetal heart was proposed in the same year by Deng et al, who used real-time directed M-mode to gate the fetal heart rate and spatial information. Other attempts to gate the spatial and temporal information included the use of the fetal heart rate acquired by Doppler ultrasonography, or cardiotocography.

Useful information about cardiac anatomy and function can also be obtained by performing 3DUS of the fetal heart with a freehand acquisition device. Guerra et al, for example, proposed that if volume data sets of the fetal heart were acquired with a freehand acquisition device but without movement of the transducer during acquisition, M-mode–like images (both in gray scale as well as color Doppler) could be obtained and examined in any plane of section, regardless of the original plane of acquisition. In 2001, Chaoui et al described reconstruction and evaluation of the anatomic relationships of the great vessels using a freehand 3DUS scanner with power Doppler imaging.

Four-dimensional visualization of the fetal heart became a practical reality with the incorporation of STIC algorithms into commercially available equipment (Voluson 730, GE Healthcare, Kretztechnik, Zipf, Austria; and HD-11; Philips Medical Systems, Bothell, WA). Several manuscripts have reported on techniques to examine the fetal heart using this technology. Outflow tracts can be systematically examined with the use of multiplanar display techniques with good interobserver and intraobserver agreement, and dynamic 4D rendered reconstruction of the outflow tracts can be accomplished in the clinical setting by the combination of gray scale, color Doppler, power Doppler, and B-flow imaging or, alternatively, rendering algorithms such as inversion mode in the reconstruction process (Figure 5). Algorithms to automatically slice the volume data set and obtain the cardiac planes of section used to examine the fetal heart have also been proposed.

Volumetric Measurements of the Fetal Heart

Preliminary data on volume measurements of the fetal heart, cardiac chambers, and ventricular masses have also been reported by some investigators. Meyer-Wittkopf et al compared the ventricular volumes of 29 healthy fetuses and 21 fetuses with congenital heart disease. In both groups, ventricular volumes increased with gestational age. However, the combined end-diastolic and stroke volumes of both ventricles were found to be significantly reduced in fetuses with congenital heart disease characterized by a marked discrepancy in ventricular size. Esh-Broder et al evaluated 21 healthy fetuses between 21 and 24 weeks of gestation and reported on the calculation of ejection fractions for the right and left ventricles using volume measurements of the cardiac chambers in systole and diastole.

Figure 5. Volume-rendered image with the inversion mode showing crisscrossing of the aorta and pulmonary artery as these vessels exit the left and right ventricles.
Two-Dimensional Ultrasound Versus 3DUS and 4DUS for the Examination of the Fetal Heart

To date, a handful of studies, using several of the technologies described in the previous paragraphs, have attempted to compare visualization rates for cardiac structures and views, as well as the capability to diagnose congenital heart disease, between 2DUS and 3DUS/4DUS. A summary of the results of these studies is provided in Table 4.139–145 Overall, visualization rates for specific planes of sections, such as the 4-chamber view, right ventricular outflow tract, and left ventricular outflow tract have been higher with the use of 2DUS. Meyer-Wittkopf et al.117 attempted to identify potential advantages of 3D Doppler-gated fetal echocardiography for visualization of congenital anomalies in 20 fetuses. Among the 17 cases for which 3D examination was feasible, complete display of the underlying cardiac malformation was accomplished in only 7 (41%), compared with satisfactory visualization in all cases by 2DUS. These observations may reflect the fact that, thus far, most studies have been conducted by specialists in fetal echocardiography, with a variety of technologies that may not yield optimal 3D and 4D imaging. Therefore, it is not surprising that imaging performance was superior with 2DUS, a technique that is well established and used in daily clinical practice by these specialists.

An interesting approach for the evaluation of 3D and 4D fetal echocardiography in clinical practice has been the transmission of volume data sets of the fetal heart acquired in one location to a remote institution for analysis.29,124,146 Michailidis et al.146 examined 30 healthy fetuses between 22 and 28 weeks of gestation by 3DUS and transmitted the volume data sets via an Internet link for examination by observers who were not involved in volume acquisition. A complete heart examination was possible in 76% of the cases (23/30), with adequate visualization of the 4-chamber view and cardiac situs in all instances. The right outflow tract was visualized in 96.7% (29/30) of the cases, and the left ventricular outflow tract was visualized in 83.3% (25/30) of the cases. The long axis views of the aortic arch, superior vena cava, inferior vena cava, and pulmonary veins were visualized in more than 80% of cases. Viñals et al.124 used a similar approach to evaluate volume data sets acquired by 4DUS with STIC by asking obstetricians with limited experience in fetal echocardiography to acquire volume data sets in a remote location and transfer these volume data sets for examination by an expert. One hundred fetuses were examined, and standard cardiac planes were obtained by scrolling through the volume data sets from the upper abdomen to the mediastinum. Visualization

Table 4. Visualization Rates for the 4-Chamber View, Left Ventricular Outflow Tract, and Right Ventricular Outflow Tract: Comparison Between 2DUS and 3DUS

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Population</th>
<th>4CH</th>
<th></th>
<th>LVOT</th>
<th></th>
<th>RVOT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3DUS</td>
<td>2DUS</td>
<td>3DUS</td>
<td>2DUS</td>
<td>3DUS</td>
<td>2DUS</td>
</tr>
<tr>
<td>Zosmer et al.139</td>
<td>1996</td>
<td>Uncomplicated pregnancies</td>
<td>54</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>40</td>
<td>87.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meyer-Wittkopf et al.</td>
<td>1996</td>
<td>Cadaveric fetal hearts with anomalies*</td>
<td>7</td>
<td>6</td>
<td>85.7</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sklansky et al.141</td>
<td>1997</td>
<td>Healthy uncomplicated pregnancies†</td>
<td>6</td>
<td>6</td>
<td>100.0</td>
<td>6</td>
<td>100.0</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levental et al.142</td>
<td>1998</td>
<td>High-risk pregnancies</td>
<td>31</td>
<td>31</td>
<td>100.0</td>
<td>22</td>
<td>71.0</td>
<td>14</td>
</tr>
<tr>
<td>Sklansky et al.143</td>
<td>1998</td>
<td>Uncomplicated pregnancies, gated 3DUS</td>
<td>9</td>
<td>5</td>
<td>55.6</td>
<td>5</td>
<td>55.6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uncomplicated pregnancies, nongated 3DUS</td>
<td>2</td>
<td>28.6</td>
<td>5</td>
<td>71.4</td>
<td>2</td>
<td>28.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meyer-Wittkopf et al.</td>
<td>2000</td>
<td>Uncomplicated pregnancies‡</td>
<td>30</td>
<td>19</td>
<td>63.3</td>
<td>29</td>
<td>96.7</td>
<td>19</td>
</tr>
<tr>
<td>Bega et al.145</td>
<td>2001</td>
<td>Uncomplicated pregnancies‡</td>
<td>18</td>
<td>15</td>
<td>93.8</td>
<td>15</td>
<td>93.8</td>
<td>14</td>
</tr>
</tbody>
</table>

4CH indicates 4-chamber view; LVOT, left ventricular outflow tract; and RVOT, right ventricular outflow tract.
*In vitro study; 3D volume data sets compared to magnetic resonance imaging.
†First study to report the results of 4D fetal echocardiography using a gated algorithm to synchronize spatial and temporal information from volume data sets.
‡Three-dimensional volume data sets were obtained using transverse and longitudinal sweeps through the fetal chest.

Three- and 4-Dimensional Ultrasound in Obstetric Practice
rates for the 4-chamber view, left and right ventricular outflow tracts, 3-vessel view, and 3-vessel and trachea views ranged from 81% to 100%, with low visualization rates observed for structures located in the abdomen or upper mediastinum. The low visualization rates for structures located in the abdomen or upper mediastinum was attributed to the lack of experience of the operators, who did not use a wide enough acquisition angle sweep to include these structures.

Real-time 4D Examination of the Fetal Heart

Direct real-time volumetric scanning of the fetal heart is now possible with the use of 2D matrix array transducers. In 1999, Sklansky et al reported the preliminary observations on real-time examination of the fetal heart using this technology, which was capable of acquiring a pyramidal volume of echocardiographic data at a rate of 20 volumes per second. The investigators examined 10 fetuses between 21 and 36 weeks of gestation, 4 of whom had congenital heart disease diagnosed by 2DUS. Fair to good image quality was achieved by real-time 4DUS in 11 of 12 examinations, and in 70% of the cases, basic cardiac views could be adequately visualized. Similar observations were reported in 2000 by Scharf et al, who obtained images of at least satisfactory quality in 13 fetuses examined with a 2D matrix array transducer between 20 and 24 weeks of gestation. Sklansky et al subsequently reported on the use of this technology to obtain instantaneous 3D volume-rendered image displays of fetal cardiac structures and to successfully visualize a wide range of cardiac anomalies (hypoplastic left heart syndrome, atioventricular canal, double-inlet single ventricle, double-outlet right ventricle, and transposition of the great arteries), but not small ventricular septal defects. Although there are still limitations in image resolution as well as the aperture of the volume data set in the z-plane, real-time 4D examination of the fetal heart with 2D matrix array transducers is feasible today. It is expected that the development and eventual introduction into clinical practice of convex 2D matrix array transducers composed of 8000 piezoelectric elements (as opposed to the currently commercially available transducers with up to 3000 elements) will lead to an ever-expanding role of this technology in 3D and 4D obstetric ultrasound, particularly for the examination of the fetal heart.

Three-Dimensional Ultrasound During the First Trimester of Pregnancy

In 1989, Sohn et al reported preliminary observations regarding the visualization of the human embryo, amniotic sac, and uterus by 3DUS performed at 7, 9, 11, and 13 weeks of gestational age. In 1995, Blaas et al were able to reconstruct the primitive brain vesicles of 3 fetuses at gestational ages of 7, 9, and 10 weeks using a 7.5-MHz transvaginal mechanical annular transducer for volume acquisition and an external computer workstation for volume rendering. The study showed, for the first time, that structures measuring only a few millimeters could be adequately reconstructed and displayed by 3DUS methods. Subsequent observational studies described surface rendering of external embryonic features in singleton and twin pregnancies, including reconstructions performed with a 20-MHz catheter-based high-resolution transducer before therapeutic abortion, further detailed characterization of the development of the embryonic brain, improved differentiation between cystic hygroma and nuchal translucency thickness (NTT), as well as the possibility of completing a first-trimester study that included NTT measurements in less time than 2DUS, and with the same degree of reliability.

Volumetry in Early Pregnancy: Correlation With Abnormal Pregnancy Outcome

Several investigators have performed volumetric measurements of the gestational sac, yolk sac, embryo and fetus, and placenta in early gestation. The outcomes of interest have been either the prediction of spontaneous miscarriage or aneuploidy. Gestational sac volume increases with gestational age from approximately 1.50 mL at 5 weeks to approximately 120 to 200 mL at 12 weeks and 144 mL at 14 weeks. In contrast, an increase in yolk sac volume is only observed from 5 to 8 weeks of gestation (from 7.25 ± 1.55 to 51.54 ± 4.85 mL, mean ± SD), after which the measurements plateau until the yolk sac disappears around the 12th week of gestation. Yolk sac vascularization by power Doppler imaging is observed with higher frequency between the seventh and eighth week of gestational age, with pulsatility indices ranging from 3.18 ± 0.96. As expected, embryonic and fetal volumes show a
strong correlation with gestational age, ranging from 1.22 mL at 7 weeks of gestation to approximately 49.87 mL at 10 weeks according to Blaas et al.,158 or from 0.07 mL at 6 weeks to 14.25 mL at 12 weeks according to Aviram et al.165 Placental volume measurements in normal pregnancy range from 91 mL at 11 weeks of gestation to 147 mL at 14 weeks.166

The first attempt to correlate gestational sac volume with pregnancy outcome was reported by Steiner et al.,24 who observed that among 5 cases of missed abortion or blighted ovum, 3 had gestational sac volume measurements below the fifth percentile for age. In contrast, Mueller et al.168 measured gestational sac volumes from 5 to 12 weeks of gestation in 130 pregnancies and found no difference in gestational sac volume measurements among 4 pregnancies that ended in spontaneous abortion before the 16th week of gestation. The study that included the largest number of miscarriages (n = 81) in an attempt to determine the association between gestational sac volume and abnormal pregnancy outcome was reported by Acharya and Morgan.168 These investigators found that both the mean gestational sac diameter/crown-rump length ratio (miscarriage, 3.3 [95% confidence interval (CI), 2.51–4.08]; versus normal pregnancies, 2.1 [95% CI, 1.67–2.63]; P = .008) and the gestational sac volume/embryonic volume ratio (miscarriage, 3.3 [95% CI, 2.51–4.08]; versus normal pregnancies, 459.5 [95% CI, 81.8–837.2]; P = .023) were higher in cases of miscarriage. However, 3D volume measurements were not superior to 2DUS measurements in predicting abortion. Similar conclusions were reached by Figueras et al.,169 who found that gestational sac and yolk sac volume measurements were not superior to traditionally used 2DUS measurements (gestational sac diameter) in predicting spontaneous abortion. Gestational sac volume measurements were also shown not to be useful in predicting the outcome of cases of missed miscarriages managed expectantly.167

Several studies have reported on the use of volumetric measurements of the gestational sac, placenta, and fetus during the first trimester to predict major chromosomal anomalies.166,170–172 Metzenbauer et al.172 reported placental volumes smaller than the 10th percentile for age in 10 of 17 pregnancies affected by aneuploidy. More recently, gestational sac171 and placental volume166 measurements were compared between 417 normal pregnancies and 83 pregnancies complicated by a major chromosomal anomaly. Mean gestational sac volume was smaller in pregnancies complicated by triploidy and trisomy 13,171 whereas placental volume measurements were smaller in pregnancies with trisomies 13 and 18 and below the fifth percentile for gestational age in 39% of the cases.166 Although smaller, gestational sac and placental volume measurements were considered by the investigators to be of limited use for the prediction of major chromosomal defects because of the significant overlap between measurements of normal and abnormal cases.166,171 Falcon et al.170 studied fetal trunk and head volumes in 500 normal pregnancies as well as 140 pregnancies complicated by a major chromosomal anomaly. The investigators found that these measurements were 10% to 15% smaller than the mean for gestational age in fetuses with trisomy 21, and 40% to 45% smaller in those with trisomies 13 and 18 and triploidy. In contrast, the crown-rump length was only 8% to 15% smaller in pregnancies complicated by trisomies 13 and 18 and triploidy. These findings confirmed an association between chromosomal defects and fetal growth restriction, while suggesting that volume measurements of the fetal trunk and head using 3DUS may be better than measurement of crown-rump length to quantify the degree of early growth impairment in fetuses with chromosomal abnormalities.170

Fetal Anatomic and Biometric Survey by First-Trimester 3DUS

Hull et al.162 examined 32 pregnancies at a mean gestational age of 12.3 ± 0.2 weeks first by 2DUS and then by transvaginal 3DUS. Basic fetal biometric measurements (crown-rump length, biparietal diameter, head circumference, abdominal circumference, and femur length), a fetal anatomic survey (yolk sac, stomach, bladder, renal area, 4-chamber view of the heart, cord insertion, choroid plexuses, cerebral ventricles, genitalia, upper extremities, hands, digits, and lower extremities), NTT thickness measurements, and an evaluation of the uterus and placenta were attempted by both techniques. The success rate for performing a complete biometric assessment was higher for 3DUS (78.8% [126/160] versus 47.5% [76/160]; P < .001), except for crown-rump length measurements (90.6% [29/32] versus 87.5% [28/32]; P = .16). Multiplanar 3DUS had
higher overall rates for visualization of anatomic structures \((\chi^2, P < .001) \), with the stomach, cord insertion, choroid plexuses, cerebral ventricles, and hands visualized more often by 3DUS than by 2DUS. Nuchal translucency thickness was successfully measured in 96.9\% (31/32) of the fetuses by 3DUS, but only 37.5\% (12/32) of the fetuses by 2DUS \((P < .001) \). Although the total time taken to complete both 2DUS and 3DUS studies was similar \((14.7 \pm 0.9 \text{ minutes} \text{ for } 2DUS \text{ versus } 13.2 \pm 0.4 \text{ minutes} \text{ for } 3DUS; \ P < .05) \), transducer time was significantly shorter for 3DUS \((2.7 \pm 0.2 \text{ minutes} \text{ versus } 14.7 \pm 0.9 \text{ minutes}; \ P < .001) \).

Nuchal Translucency Thickness Measurements

Increased NTT between 11 and 14 weeks of gestation is associated with an increased risk of chromosomal anomalies\(^{173-177}\) and congenital heart defects.\(^{178-187}\) The role of 3DUS in measuring the NTT has been addressed by several studies,\(^{162,188-194}\) with a subset comparing the performance of 2DUS and 3DUS for obtaining this measurement.\(^{162,188,190,192-194}\) When NTT measurements were attempted by the transvaginal route, most studies reported higher visualization rates for NTT by 3DUS, with no difference in mean NTT values between measurements obtained by 2DUS and 3DUS.\(^{162,188,192}\) In contrast, visualization rates were similar when NTT was measured with transabdominal 2DUS or 3DUS.\(^{190}\) In the study of Paul et al,\(^{193}\) the authors took the original plane of acquisition into account when analyzing their results. For example, when 3D acquisition was performed with the fetus in a sagittal position, clear visualization of the NTT was achieved in most cases \((38/40)\), in contrast to acquisitions performed with the fetus in random positions \((24/40)\). Moreover, agreement between 3D and 2D measurements was poor for volumes acquired randomly. Worda et al\(^{194}\) compared NTT measurements performed by transabdominal 2DUS, transabdominal 3DUS, and transvaginal 3DUS. For NTT measurements of less than 3 mm by transabdominal 2DUS, there was a statistically significant overestimation of NTT measurements by the transabdominal and transvaginal 3DUS methods \((\text{median}, 1.4 \text{ versus } 1.6 \text{ and } 1.6 \text{ mm}; \ P = .016 \text{ and .015}, \text{ respectively})\), whereas for NTT measurements of 3 mm or greater, there was a statistically significant underestimation of NTT measurements by transabdominal 3DUS \((\text{median}, 5.0 \text{ versus } 4.6 \text{ mm}; \ P = .002)\).

Volume Measurements

There is evidence that the volumetric measurements by 3DUS are more accurate than volume estimations from 2D measurements. Riccabona et al\(^{195}\) for example, measured 21 balloons of various shapes and volumes \((\text{range}, 20-490 \text{ mL})\) by 2DUS and 3DUS and reported that 2DUS measurements had a mean absolute error of \(12.6\% \pm 8.7\% \) \((\text{range}, -27.5\% \text{ to } +39.2\%)\) compared to a mean absolute error of only \(6.4\% \pm 4.4\% \) \((\text{range}, -6.0\% \text{ to } +15.5\%)\) for 3DUS. This difference was more pronounced for irregularly shaped objects \((2DUS, 17.3\% \pm 12.1\%; \text{ versus } 3DUS, 7.1\% \pm 4.6\%)\).

Several investigators have thus explored the possibility of performing quantitative measurements of fetal organs and structures by 3DUS. In our literature review, we identified 72 original publications reporting on fetal biometric or volumetric measurements performed by 3DUS and, in this section, we will focus on 2 aspects of 3D volumetric measurements: (1) studies that have attempted to use volumetric measurements of the fetal limbs to estimate birth weight; and (2) studies that have attempted to use volumetric measurements of the fetal lungs to predict pulmonary hypoplasia.

Estimation of Fetal Weight by 3DUS

Fetal limb volume was proposed to be an important parameter for the assessment of fetal growth and nutrition by Jeanty et al\(^{196}\) in 1985. Although limb volumes were calculated with the use of geometric assumptions and equations using circular and elliptical perimeters, both thigh and arm volumes were strongly correlated with gestational age. In 1993, Favre et al\(^{23}\) attempted to standardize limb circumference measurements by 3DUS. The authors studied 157 patients, and 3DUS was used to estimate the midpoint of the femoral diaphysis, whereby limb circumference was measured. Thigh circumference improved birth weight estimation for small-for-gestational-age fetuses, whereas the use of the arm circumference performed better for adequate-for-gestational-age and large-for-gestational-age fetuses. Results were subsequently validated in a group of 213 pregnancies, and the most accurate results were observed for birth weight prediction of large-for-gestational-age fetuses.\(^{197}\)
Volumetric measurements of the thigh and arms by 3DUS and correlation of these parameters with birth weight have been reported by Chang et al198 and Liang et al.199 Chang et al198 measured thigh volume in 100 fetuses and found this parameter to be significantly correlated with birth weight ($r = 0.89$). Prospective evaluation of 50 additional patients found that the mean percent error in estimating fetal weight was 0.8% ± 8.3%. However, the random error (±6.3%) was greater than that generated by other 3 models (range, ±6.0%–7.0%). Liang et al199 found arm volume to be more accurate than other models for estimating fetal weight (random error for 3DUS, 0.35% ± 4.6%; range of random error for other 2D models, 9.54%–10.47%).

Other investigators have proposed alternative methods to shorten the time necessary to measure limb volumes200,201 or the use of multivariate fetal weight prediction models based on a combination of 2D and 3D parameters202 to predict birth weight. One such method is “fractional limb volume.”201 Fractional limb volume is determined by measuring the humeral or femoral diaphysis length with electronic calipers (3DView, version 4.5; GE Healthcare, Milwaukee, WI), after which the software automatically defines a cylindrical limb volume based on 50% of the diaphyseal bone shaft length. Lee et al201 investigated the possibility of estimating fetal weight with fractional limb volume measurements in 100 fetuses examined within 4 days of delivery. Fetal weight estimates generated by a multivariate model including fractional limb volume and abdominal circumference deviated from true birth weight by only –0.025% ± 7.8%. Prospective testing of 30 additional fetuses confirmed the superior performance of fractional limb volume (2.3% ± 6.6%) over traditional 2DUS methods to estimate fetal weight (8.4% ± 8.7%).203 The 3D model predicted 20 of 30 fetal weights to within 5% of true birth weight, whereas the traditional 2DUS method203 predicted only 6 of 30 birth weights to within 5% of true fetal weight.

Fetal Growth Evaluation by 3DUS

Soft tissue parameters have also been used for the evaluation of fetal growth on the basis of the Rossavik model.204,205 With each fetus as its own control, this approach uses growth velocity data for a given parameter during the second trimester to establish an expected growth trajectory during the third trimester.206 Individualized growth assessment, based on fractional limb volume measurements from 3DUS, can accurately predict normal limb growth during the third trimester of pregnancy.

Volumetric Measurements of the Fetal Lungs

Pulmonary hypoplasia is associated with a high mortality rate in conditions such as prolonged premature rupture of the membranes, diaphragmatic hernia, and skeletal dysplasias. A number of ultrasonographic parameters have been investigated for the prediction of pulmonary hypoplasia, including measurements of the thorax and lungs and a series of ratios between thoracic measurements and other biometric parameters.207–219 Doppler velocimetry of the pulmonary arteries,219–225 Doppler evaluation of tracheal fluid flow,226 and, more recently, 3D volumetric measurements of the fetal lungs by either ultrasound227–239 or MRI.240–246

Fetal lung volumetry by 3DUS has been performed with the use of 2 techniques: multiplanar227–231 and Virtual Organ Computer-Aided Analysis (VOCAL; GE Healthcare, Kretztechnik).232–237 Kalache et al232 showed that both 3D multiplanar and 3D VOCAL modes could be used to measure pulmonary volumes in fetuses, an observation subsequently confirmed by Moeglin et al.237 A potential advantage of the VOCAL technique is the possibility of obtaining fine contours of the lungs, which may be particularly valuable when the outline of the lung is irregular, such as in cases of congenital diaphragmatic hernia. In contrast, lung volume measurements obtained by the 3D multiplanar technique are faster, taking usually less than 5 minutes to perform.237 Volumes are best estimated when data sets are acquired by transverse sweeps through the fetal thorax.229

Nomograms for lung volume by 3DUS have been proposed by several investigators,227–229,236–239 A brief description of the studies with the largest numbers of cases is provided here. Ruano et al236 determined nomograms for lung volume calculated by the VOCAL technique in 109 healthy fetuses. The observed-expected fetal lung volume ratio was significantly lower in fetuses with congenital diaphragmatic hernias when compared with control fetuses (median, 0.34; range, 0.15–0.66; versus median, 1.02; range,
Moeglin et al. proposed an alternative approach to calculate lung volumes using 2D geometric pyramidal volume (2DGPV). The method assumes that the lung is a geometric pyramid, and the total pulmonary volume is calculated as \[\text{surface area of right lung base (square centimeters) + surface area of left lung base (square centimeters)} \times \frac{1}{3} \text{height of right lung (centimeters)}. \] Surface area of lung bases is measured on the transverse thoracic view containing the 4 chambers of the heart, and the height of the right lung is measured on a right sagittal paramedical view. Although lung volumes calculated by this method were significantly smaller than volumes calculated by the VOCAL technique, Moeglin et al. have proposed an equation to extrapolate 3D volumes from 2D measurements using the formula \[\text{RPVE (milliliters) = 4.24 + [1.53 \times (2DGPV)]}, \] where RPVE is the reevaluated pulmonary volume equation. Preliminary results in 9 fetuses with pulmonary hypoplasia were encouraging, with all of them having lung volume estimates below the first percentile for gestational age.

Sonographic Tomography

The role of tomographic ultrasound imaging in clinical practice remains to be determined. Benacerraf et al. reported preliminary findings in 25 pregnancies scanned during the second trimester, in which 5 volume data sets encompassing the fetal head, face, chest, abdomen, and limbs were acquired for later offline analysis. Volume data sets were examined by physicians who were not involved in volume acquisition, and the visualization rates for fetal anatomic structures and time to complete the examination (including volume acquisition and review) were calculated. Complete structural surveys were obtained in 20 of the 25 fetuses. In 1 of the 5 fetuses with an incomplete survey, the face was not visualized by 3DUS or 2DUS because of a prone fetal position. Portions of the hands and feet were not visualized in the other 4 cases. Importantly, the time required to complete the anatomic surveys was decreased by half with 3DUS (13.9 versus 6.6 minutes; \(P < .001 \)). With the availability of software to automatically slice the volume data sets, this approach may become attractive to busy clinical practices.

Three- and 4-Dimensional Ultrasound and Maternal-Fetal Bonding

Visualization of the fetus by the mother may arouse emotions capable of triggering or improving maternal-fetal bonding, and that may lead to changes in behavior and lifestyle that promote maternal and fetal health. Ji et al. compared maternal-fetal bonding between 50 mothers exposed to 2DUS only and 50 exposed to both 2DUS and 3DUS. Mothers exposed to 3DUS had a higher tendency to show their ultrasound images to other people and to form a mental picture of the baby after the examination (82% versus 39%; \(P < .001 \)). Patients having 3DUS examinations consistently scored higher than those having a 2DUS examination alone for all categories of maternal-fetal bonding. Rustico et al. conducted a randomized clinical trial to evaluate whether the addition of 4DUS to the conventional 2D fetal scan could have an effect on maternal emotional status. One hundred pregnant women in the second trimester were randomized to 2DUS only (n = 52) or 2DUS plus 4DUS (n = 48). No difference in the proportion of women with a positive response to 2DUS or 2DUS plus 4DUS was observed. In addition, when the investigators applied a validated instrument to evaluate maternal-fetal bonding (Maternal Antenatal Attachment Scale) to a subset of 46 patients enrolled in the study, no difference between the 2 groups in quality and intensity of attachment or global attachment score was identified.

A recently published study, however, took an innovative approach to this issue and investigated whether a virtual reality workstation offering 3D fetal visual and kinesthetic interaction between the mother and fetus could affect maternal stress. A haptic interface based on 3D reconstruction of sequential 2DUS images of the fetus was used to provide the mother with visual and kinesthetic stimuli. The investigators applied the State Trait Anxiety Inventory Form Y test to the mothers and measured salivary cortisol levels before and after maternal visual and kinesthetic interaction with the fetus. The results of the study showed a reduction in both anxiety and salivary cortisol levels after virtual interaction between mother and fetus.
Three-dimensional ultrasound provides additional diagnostic information for the diagnosis of facial anomalies, especially for the diagnosis of facial clefts. There also seems to be a benefit in the use of 3DUS in the diagnostic evaluation of fetuses with neural tube defects and skeletal malformations. Large studies comparing the diagnostic performance of 2DUS and 3DUS for the diagnosis of congenital anomalies, however, have not provided conclusive results.

Three-dimensional ultrasound does offer additional resources for examining the fetus (eg, multiplanar, rendered and automatic slicing displays) over what is possible by 2DUS. Sonographic tomography, either by manually exploring the volume data set or by automatic slicing, deserves further investigation. Preliminary evidence suggests that this may decrease the examination time with minimal impact on the visualization rates of anatomic structures. If this technique is to gain wide acceptance in clinical practice, investigators need to determine whether the information contained in the volume data set, by itself, is sufficient to evaluate fetal biometric measurements and, more importantly, to diagnose congenital anomalies. Some evidence to this end is already available from a study conducted by Nelson et al,28 who reported on the feasibility of performing “virtual examinations” at remote locations, with investigators blinded to the results of 2DUS examinations. Differences between 2DUS and 3DUS measurements were less than 5%, and the diagnostic information provided by 2DUS and 3DUS was comparable.

We believe that additional research is needed regarding the role of 3DUS and 4DUS in improving the diagnosis of congenital anomalies. Specifically, contributions to the diagnosis of congenital heart disease and central nervous system anomalies are necessary. Another unexplored area of research is the role of 3DUS in education and training. We hope that improvements in image quality, more sophisticated volume analysis tools, development of faster computers, and availability of real-time matrix array transducers will greatly contribute to this process.

References

Three- and 4-Dimensional Ultrasound in Obstetric Practice

208. Fong K, Ohlsson A, Zalev A. Fetal thoracic circumfer-
1160.

266.

1566.

158.

